Abstract

Using the dynamic quantum Monte Carlo simulation, the dynamic magnetocaloric effect of a ferromagnetic multilayer nanographene (MNG) is studied within the dynamic Ising model under the applied of a time-dependent oscillating (h(t)) magnetic field. The influence of the amplitude h0 and the period τ of the h(t) and the transverse field Ω on the thermal behavior of the dynamic order parameter and the dynamic magnetocaloric properties (the dynamic isothermal ΔST(T,h(t)) entropy change and the dynamic ΔTadT,h(t) adiabatic change of temperature), the dynamic specific heat, the dynamic entropy and as well as the dynamic relative cooling power (RCP(t)) ferrimagnetic MNG are studied. Our predicted results may be a reference for future experiment and theoretical studies of the nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.