Abstract

Static (Cstat) and dynamic (Cdyn) lung compliance and lung stress relaxation were examined in isolated lungs of newborn kittens and adult cats. Cstat was determined by increasing volume in increments and recording the corresponding change in pressure; Cdyn was calculated as the ratio of the changes in volume to transpulmonary pressure between points of zero flow at ventilation frequencies between 10 and 110 cycles/min. Lung volume history, end-inflation volume, and end-deflation pressure were maintained constant. At the lowest frequency of ventilation, Cdyn was less than Cstat, the difference being greater in newborns. Between 20 and 100 cycles/min, Cdyn of the newborn lung remained constant, whereas Cdyn of the adult lung decreased after 60 cycles/min. At all frequencies, the rate of stress relaxation, measured as the decay in transpulmonary pressure during maintained inflation, was greater in newborns than in adults. The frequency response of Cdyn in kittens, together with the relatively greater rate of stress relaxation, suggests that viscoelasticity contributes more to the dynamic stiffening of the lung in newborns than in adults. A theoretical treatment of the data based on a linear model of viscoelasticity supports this conclusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.