Abstract

We consider the problem of determining optimal purchasing and shipping quantities over a finite planning horizon for arborescent, multi-echelon physical distribution systems with deterministic, time-varying demands. We assume that the inventory holding cost at a given warehouse of the distribution network is a linear function of the inventory level, and that the total procurement cost (i.e., ordering, plus purchasing, plus transportation and reception costs) is a general piecewise-linear function of the quantities shipped to and from the warehouse. We formulate a mixed integer linear programming model of the problem and develop a Lagrangian relaxation-based procedure to solve it. We show computational results for problems with 12 periods, up to 15 warehouses, and 3 transportation price ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.