Abstract

In this study, numerical simulations on the dynamic load-displacement behavior of typical RC columns under dynamic loadings considering the strain rate effect and the influence of shear deformation, geometrical nonlinearity, plastic hinge zone were performed with a dynamic fiber element model, where the dynamic constitutive model of concrete considering the strain rate effects proposed by the CEB-FIP code (1990) was employed. The developed dynamic fiber element models with and without the consideration of shear deformation were employed to simulate the load-displacement behavior of RC column specimens with different shear span to depth ratios and under different loading speeds. The simulation results were compared with test measurements. Results show that difference between the simulation results with and without the consideration of shear deformation can be detected, especially for specimens with small shear span to depth ratios. The simulation results are closer to the test measurements for all of the specimens when shear deformation is considered. The shear deformation effect on the dynamic load-displacement behavior of short columns subjected to dynamic loadings is needed to be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call