Abstract

ABSTRACTThis paper proposes a novel algorithm for dynamic tile partitioning to achieve the optimal workload balance for parallel processing architectures in just-in-time HEVC encoding. Tile boundaries are dynamically shifted depending on the tile cost, a value that denotes predicted computational complexity of a single tile in a frame. The overall cost of a tile is determined as a combination of costs of three computationally most expensive and resource-hungry operations in HEVC encoding: prediction, transformation, and entropy coding. The algorithm aims at exploiting different types of processing architectures, from homogeneous multicore CPU architectures to heterogeneous architectures in the actual conditions in which streaming servers operate. The experimental results show that the proposed algorithm outperforms uniform tiling, by up to 5.5% in processing time, while maintaining the same video quality and bitrate. Compared to the state-of-the-art algorithms, the proposed algorithm achieves up to 8.85% speedup depending on the number of videos that are being encoded concurrently on a video streaming server.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.