Abstract
AbstractSemidilute solutions of hydrophobically modified alkali‐soluble emulsion (HASE) were examined by dynamic light scattering and rheological techniques. For the model polymer without associative macromonomer, two q2 dependent diffusional modes were detected in the decay time distributions. With increasing hydrophobicity of the associative macromonomer, the narrow fast peak was substituted by a shallow broad peak and only one q2 dependent slow mode could be accurately detected, which indicated that the heterogeneity of these associated clusters increases with increasing carbon number. The bulk steady‐shear viscosity exhibits similar results to the diffusion coefficients of the aggregate observed from light scattering measurements. The length of poly(ethylene oxide) (PEO) spacer chain alters the solution properties as well as the associative cluster structure. With increasing length of PEO spacer chain, intramolecular association was substituted by intermolecular association. For EO segment larger than 32 units, intramolecular association dominates, where the formation of HASE aggregates is controlled by the balance of electrostatic repulsion and hydrophobic attraction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3288–3298, 2005
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.