Abstract

Intravenously administered iron-carbohydrate nanoparticle complexes are widely used to treat iron deficiency. This class includes several structurally heterogeneous nanoparticle complexes, which exhibit varying sensitivity to the conditions required for the methodologies available to physicochemically characterize these agents. Currently, the critical quality attributes of iron-carbohydrate complexes have not been fully established. Dynamic light scattering (DLS) has emerged as a fundamental method to determine intact particle size and distribution. However, challenges still remain regarding the standardization of methodologies across laboratories, specific modifications required for individual iron-carbohydrate products, and how the size distribution can be best described. Importantly, the diluent and serial dilutions used must be standardized. The wide variance in approaches for sample preparation and data reporting limit the use of DLS for the comparison of iron-carbohydrate agents. Herein, we detail a robust and easily reproducible protocol to measure the size and size distribution of the iron-carbohydrate complex, iron sucrose, using the Z-average and polydispersity index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.