Abstract
Pavement systems provide critical infrastructure services to society but also pose significant impacts related to large material consumption, energy inputs, and capital investment. A life-cycle model was developed to estimate environmental impacts resulting from material production and distribution, overlay construction and preservation, construction-related traffic congestion, overlay usage, and end of life management. To improve sustainability in pavement design, a promising alternative material, engineered cementitious composites (ECC) was explored. Compared to conventional concrete and hot-mixed asphalt overlay systems, the ECC overlay system reduces life-cycle energy consumption by 15 and 72%, greenhouse gas emissions by 32 and 37%, and costs by 40 and 47%, respectively. Material, construction-related traffic congestion, and pavement surface roughness effects were identified as the greatest contributors to environmental impacts throughout the overlay life cycle. The sensitivity analysis indicated that traffic growth has much greater impact on the life-cycle energy consumption and environmental impacts of overlay systems compared to fuel economy improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.