Abstract

We use broadband seismic recordings to trace the dynamic process of the deep‐seated Akatani landslide that occurred on the Kii Peninsula, Japan, which is one of the best recorded large slope failures. Combining analyses of the seismic records with precise topographic surveys done before and after the event, we can resolve a detailed time history of the mass movement. During 50 s of the large landslide, we observe a smooth initiation, acceleration with changes in basal friction, and reversal of the momentum when the mass collides with the opposite valley wall. Of particular importance is the determination of the dynamic friction during the landslide. The coefficient of friction is estimated to be 0.56 at the beginning of the event and drops to 0.38 for most of the sliding. The change in the frictional level on the sliding surface may be due to liquefaction or breaking of rough patches and contributes to the extended propagation of the large landslide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.