Abstract

Since knowledge in an expert system is vague and modified frequently, expert systems are fuzzy and dynamic. It is very important to design a dynamic knowledge inference framework which is adjustable according to knowledge variation as human cognition and thinking. A generalized fuzzy Petri net model, called adaptive fuzzy Petri net (AFPN), is proposed with this object in mind. AFPN not only has the descriptive advantages of the fuzzy Petri net, it also has learning ability like a neural network. Just as other fuzzy Petri net (FPN) models, AFPN can be used for knowledge representation and reasoning, but AFPN has one important advantage: it is suitable for dynamic knowledge, i.e., the weights of AFPN are adjustable. Based on the AFPN transition firing rule, a modified backpropagation learning algorithm is developed to assure the convergence of the weights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.