Abstract

In spark ignition engines, knock onset limits the maximum spark advance. An inaccurate identification of this limit penalises the fuel conversion efficiency. Thus it is very important to define a knock detection method able to assess the knock intensity of an engine operating point.Usually, in engine development, knock event is evaluated by analysing the in-cylinder pressure trace. Data are filtered and processed in order to obtain some indices correlated to the knock intensity, then the calculated value is compared to a predetermined threshold. The calibration of this threshold is complex and difficult; statistical approach should be used, but often empirical values are considered.In this paper a method that dynamically calculates the knock threshold necessary to determine the knock event is proposed. The purpose is to resolve cycle by cycle the knock intensity related to an individual engine cycle without setting a predetermined threshold.The method has been applied to an extensive set of experimental data relative to a gasoline spark-ignition engine.Results are correlated to those obtained considering a traditional method, where a statistical approach has been used to detect knock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.