Abstract

The first examples of the use of racemic vinylaziridines in a Pd-catalyzed dynamic kinetic asymmetric transformation have been examined. Optimization studies of the Pd-catalyzed addition of vinylaziridines to isocyanates revealed that the chiral ligand between trans-1,2-diaminocyclohexane and 2-diphenylphosphino-1-naphthoic acid is superior to that involving 2-diphenylphosphino benzoic acid. Surprisingly, high ee's required the use of an acid whose pKa was about 4.7 +/- 0.1 as a cocatalyst. Both acetic acid and hydroxybenzotriazole meet this requirement. Less electrophilic isocyanates (e.g., benzyl, p-methoxyphenyl) gave higher ee's than more electrophilic ones (phenyl or benzoyl). Both N-benzyl and N-arylaziridines react well to give good yields and ee's, whereas N-tosylaziridines gave lower ee's. A 1,1-disubstituted aziridine led to the formation of a tertiary C-N bond with ee's comparable to the formation of the secondary C-N bond. The products were easily reduced almost quantitatively to the sensitive imidazolidines which can be readily hydrolyzed to the vicinal diamines. The reactivity pattern is consistent with a Curtin-Hammett situation wherein the enantiodiscriminating event is the cyclization of a rapidly equilibrating dynamic pi-allyl palladium intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call