Abstract

Dynamic reconfigurability in optical and mobile networks can facilitate heterogeneous service provisioning while utilizing minimal resources. This allows cost-efficient service delivery resulting in high revenues for network operators. Deployment of elastic mobile and optical networks is a key driver for enabling reconfigurability in modern networks. Elastic optical networks can be exploited as the fronthaul portion of new generation of mobile networks. Such elastic optical fronthaul networks facilitate joint reconfiguration of flexible radio and optical elements and provide considerable performance improvements. In this paper, we focus on the joint dynamic selection of functional splits and configuration of optical transponders and illustrate that designing a converged network with optical and radio elements improves network power efficiency. A time-averaged stochastic optimization problem is formulated and its solution is derived using a modified version of the Lyapunov drift technique. Simulation results demonstrate that the proposed scheme can reduce the average power consumption by up to 70% compared to a cloud radio access network with a traditional optical fronthaul. Further, the results show that the modified Lyapunov technique can afford stringent fronthaul delays below 250 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{s}$ </tex-math></inline-formula> . We also discuss how future technology upgrades such as increasing the number of radio antenna ports and decreasing the granularity of fiber spectrum grid may influence the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call