Abstract

Job-shop scheduling problem (JSP) is used to determine the processing order of the jobs and is a typical scheduling problem in smart manufacturing. Considering the dynamics and the uncertainties such as machine breakdown and job rework of the job-shop environment, it is essential to flexibly adjust the scheduling strategy according to the current state. Traditional methods can only obtain the optimal solution at the current time and need to rework if the state changes, which leads to high time complexity. To address the issue, this paper proposes a dynamic scheduling method based on deep reinforcement learning (DRL). In the proposed method, we adopt the proximal policy optimization (PPO) to find the optimal policy of the scheduling to deal with the dimension disaster of the state and action space caused by the increase of the problem scale. Compared with the traditional scheduling methods, the experimental results show that the proposed method can not only obtain comparative results but also can realize adaptive and real-time production scheduling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.