Abstract

An inverse problem of wave propagation into a weakly laterally inhomogeneous medium occupying a half-space is considered in the acoustic approximation. The half-space consists of an upper layer and a semi-infinite bottom separated with an interface. An assumption of a weak lateral inhomogeneity means that the velocity of wave propagation and the shape of the interface depend weakly on the horizontal coordinates, x = (x1, x2), in comparison with the strong dependence on the vertical coordinate, z, giving rise to a small parameter ε ≪ 1. Expanding the velocity in power series with respect to ε, we obtain a recurrent system of 1D inverse problems. We provide algorithms to solve these problems for the zero and first-order approximations. In the zero-order approximation, the corresponding 1D inverse problem is reduced to a system of non-linear Volterra-type integral equations. In the first-order approximation, the corresponding 1D inverse problem is reduced to a system of coupled linear Volterra integral equations. These equations are used for the numerical reconstruction of the velocity in both layers and the interface up to O(ε2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.