Abstract

Abstract It is possible to levitate a mass by vibrating a flat disk located under the mass. This near-field acoustic levitation is particularly useful for eliminating friction between moving objects. This paper presents an experimental and theoretical study of the dynamic behavior of a levitating mass for different magnitudes of oscillation of the flat disk. The magnitude of the vibration of the mass appears to be independent of the amplitude of the vibration of the disk over a range of two orders of magnitude. This unusual behavior is due to the simultaneous changes of the stiffness of the air film and the natural frequency of the system as the plate vibration is changed. As the plate oscillation is reduced, the distance to resonance decreases, allowing an increase of the ratio of the output to input signals in such a way that the output remains constant. This result can be useful for improving the energy efficiency of the levitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call