Abstract

A robust backcalculation methodology that uses the Levenberg–Marquardt iterative minimization technique is presented to identify the value of unknown layer parameters from falling weight deflectometer (FWD) tests using a dynamic approach based on the spectral element method. Backcalculation is performed in the time-domain with 20 observations on each deflection history. The efficiency of the proposed methodology is demonstrated by interpreting FWD tests on three flexible pavements that cover a variety of structures, soil, and bedrock conditions. Results indicate that the dynamic approach is capable of simulating quite well the measured deflection histories using effective backcalculated moduli. In addition, comparison of critical strains between static and dynamic interpretation of FWD tests indicates that both approaches predict similar traction strains at the bottom of the asphalt concrete layer. However, the prediction of the compression strain in the subgrade with the static approach is erratic compared with the dynamic method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.