Abstract

In dynamic environments, split-second sensorimotor decisions must be prioritized according to potential payoffs to maximize overall rewards. The impact of relative value on deliberative perceptual judgments has been examined extensively [1-6], but relatively little is known about value-biasing mechanisms in the common situation where physical evidence is strong but the time to act is severely limited. In prominent decision models, anoisy but statistically stationary representation ofsensory evidence is integrated over time to anaction-triggering bound, and value-biases are affected by starting the integrator closer to the more valuable bound. Here, we show significant departures from this account for humans making rapid sensory-instructed action choices. Behavior was best explained by a simple model in which the evidence representation-and hence, rate of accumulation-is itself biased by value and is non-stationary, increasing over the short decision time frame. Because the value bias initially dominates, the model uniquely predicts a dynamic "turn-around" effect on low-value cues, where the accumulator first launches toward the incorrect action but is then re-routed to the correct one. This was clearly exhibited in electrophysiological signals reflecting motor preparation and evidence accumulation. Finally, we construct an extended model that implements this dynamic effect through plausible sensory neural response modulations anddemonstrate the correspondence between decision signal dynamics simulated from a behavioral fit of that model and the empirical decision signals. Our findings suggest that value and sensory informationcan exert simultaneous and dynamically countervailing influences on the trajectory of the accumulation-to-bound process, driving rapid, sensory-guided actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.