Abstract

The initiation of reverse transcription in human immunodeficiency virus-1 is a key early step in the virus replication cycle. During this process, the viral enzyme reverse transcriptase (RT) copies the single-stranded viral RNA (vRNA) genome into double-stranded DNA using human tRNALys3 as a primer for initiation. The tRNA primer and vRNA genome contain several complementary sequences that are important for regulating reverse transcription initiation kinetics. Using single-molecule Förster resonance energy transfer spectroscopy, we demonstrate that the vRNA–tRNA initiation complex is conformationally heterogeneous and dynamic in the absence of RT. As shown previously, nucleic acid–RT interaction is characterized by rapid dissociation constants. We show that extension of the vRNA–tRNA primer binding site helix from 18 base pairs to 22 base pairs stabilizes RT binding to the complex and that the tRNA 5′ end has a role in modulating RT binding. RT occupancy on the complex stabilizes helix 1 formation and reduces global structural heterogeneity. The stabilization of helix 1 upon RT binding may serve to destabilize helix 2, the first pause site for RT during initiation, during later steps of reverse transcription initiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.