Abstract

Rechargeable alkali metal anodes hold the promise to significantly increase the energy density of current battery technologies. But they are plagued by dendritic growths and solid‐electrolyte interphase (SEI) layers that undermine the battery safety and cycle life. Here, a non‐porous ingot‐type sodium (Na) metal growth with self‐modulated shiny‐smooth interfaces is reported for the first time. The Na metal anode can be cycled reversibly, without forming whiskers, mosses, gas bubbles, or disconnected metal particles that are usually observed in other studies. The ideal interfacial stability confirmed in the microcapillary cells is the key to enable anode‐free Na metal full cells with a capacity retention rate of 99.93% per cycle, superior to available anode‐free Na and Li batteries using liquid electrolytes. Contradictory to the common beliefs established around alkali metal anodes, there is no repeated SEI formation on or within the sodium anode, supported by the X‐ray photoelectron spectroscopy elemental depth profile analyses, electrochemical impedance spectroscopy diagnosis, and microscopic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.