Abstract

Poly(ethylene glycol)-modified ferritins (PEG-ferritins) with various molecular weights were synthesized by the grafting method, and their dynamic interfacial properties at the solid/liquid interface were investigated. The number of PEG grafted to ferritins was controlled by the amount of 1,1'-carbonyldiimidazole-modified PEG adding to the reaction solution. The adsorption kinetics and energy dissipation of PEG-ferritins onto bare Si substrate and amino-modified Si substrate were investigated with a quartz crystal microbalance (QCM) in 10 mM bis-Tris/HCl buffer (pH 5.8), while their morphologies were characterized by scanning electron microscopy (SEM). The adsorption dynamics of PEG-ferritins onto amino-modified Si substrate were quite different from those of unmodified ferritin, which can be reasonably interpreted by the desorption capability of PEG-ferritins on the surface attributed to amphiphilicity and the high-chain mobility of PEG chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.