Abstract

Longitudinal network data are increasingly available, allowing researchers to model how networks evolve over time and to make inference on their dependence structure. In this paper, a dynamic latent space approach is used to model directed networks of monthly interbank exposures. In this model, each node has an unobserved temporal trajectory in a low-dimensional Euclidean space. Model parameters and latent banks' positions are estimated within a Bayesian framework. We apply this methodology to analyze two different datasets: the unsecured and the secured (repo) interbank lending networks. We show that the model that incorporates a latent space performs much better than the model in which the probability of a tie depends only on observed characteristics; the latent space model is able to capture some features of the dyadic data such as transitivity that the model without a latent space is not able to.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.