Abstract

Voltage-sensitive Ca(2+) channels (VSCCs) mediate Ca(2+) permeability in osteoblasts. Association between VSCC alpha(1)- and beta-subunits targets channel complexes to the plasma membrane and modulates function. In mechanosensitive tissues, a 700-kDa ahnak protein anchors VSCCs to the actin cytoskeleton via the beta(2)-subunit of the L-type Ca(v)1.2 (alpha(1C)) VSCC complex. Ca(v)1.2 is the major alpha(1)-subunit in osteoblasts, but the cytoskeletal complex and subunit composition are unknown. Among the four beta-subtypes, the beta(2)-subunit and, to a lesser extent, the beta(3)-subunit coimmunoprecipitated with the Ca(v)1.2 subunit in MC3T3-E1 preosteoblasts. Fluorescence resonance energy transfer revealed a complex between Ca(v)1.2 and beta(2)-subunits and demonstrated their association in the plasma membrane and secretory pathway. Western blot and immunohistochemistry showed ahnak association with the channel complex in the plasma membrane via the beta(2)-subunit. Cytochalasin D exposure disrupted the actin cytoskeleton but did not disassemble or disrupt the function of the complex of L-type VSCC Ca(v)1.2 and beta(2)-subunits and ahnak. Similarly, small interfering RNA knockdown of ahnak did not disrupt the actin cytoskeleton but significantly impaired Ca(2+) influx. Collectively, we showed that Ca(v)1.2 and beta(2)-subunits and ahnak form a stable complex in osteoblastic cells that permits Ca(2+) signaling independently of association with the actin cytoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.