Abstract

Combination therapy can be a strategy to ensure effective bacterial killing when treating Pseudomonas aeruginosa, a Gram-negative bacterium with high potential for developing resistance. The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model that describes the in vitro bacterial time-kill curves of colistin and meropenem alone and in combination for one WT and one meropenem-resistant strain of P. aeruginosa. In vitro time-kill curve experiments were conducted with a P. aeruginosa WT (ATCC 27853) (MICs: meropenem 1 mg/L; colistin 1 mg/L) and a meropenem-resistant type (ARU552) (MICs: meropenem 16 mg/L; colistin 1.5 mg/L). PK/PD models characterizing resistance were fitted to the observed bacterial counts in NONMEM. The final model was applied to predict the bacterial killing of ARU552 for different combination dosages of colistin and meropenem. A model with compartments for growing and resting bacteria, where the bacterial killing by colistin reduced with continued exposure and a small fraction (0.15%) of the start inoculum was resistant to meropenem, characterized the bactericidal effect and resistance development of the two antibiotics. For a typical patient, a loading dose of colistin combined with a high dose of meropenem (2000 mg q8h) was predicted to result in a pronounced kill of the meropenem-resistant strain over 24 h. The developed PK/PD model successfully described the time course of bacterial counts following exposures to colistin and meropenem, alone and in combination, for both strains, and identified a dynamic drug interaction. The study illustrates the application of a PK/PD model and supports high-dose combination therapy of colistin and meropenem to overcome meropenem resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.