Abstract
The mechanism of local scour under two vibrating pipelines is investigated numerically in this research. A sediment scour model is adopted to estimate the motion of sediment. The general moving objects model, which is dynamically coupled with fluid flow, is set up to simulate the vortex-induced vibration (VIV) of the pipeline. The sediment scour model and pipeline vibration model are verified with the previous experimental results and show good agreement. Then, the coupling effects between the pipeline vibration and the local scour are investigated numerically. The effects of G/D (the ratio of the distance between the two pipelines to the diameter of the pipelines) on the local scour and the VIV of the pipeline are examined. The results indicate that the maximum scour depth under the vibrating pipelines is much larger than the scour depth under the fixed pipelines. Due to the shadowing effect of the upstream pipeline, the maximum scour depth under the upstream pipeline is deeper than that under the downstream pipeline. The pipeline vibration magnitude is closely related to the strength of the vortex that sheds behind the pipeline. The effect of G/D on the shape and strength of the vortices that shed behind the pipelines is significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.