Abstract

The study analyzes the dynamic interaction of proximate masses using a new form of semi-analytical results for the moving mass problem developed by the author. This paper presents the results for a particular case of two moving masses of equal value acted upon by constant forces of equal values. The interaction level was demonstrated to be substantially high, making it impossible to superimpose the results obtained for one mass unless the masses were located at a significantly large distance apart. In the undamped case, the onset of instability occurred at the critical velocity, as with one moving mass; however, the onset of instability could be shifted significantly into the subcritical velocity range in the damped case. The critical distance between the moving masses was determined as the value at which the exponential increase in the amplitudes was severe. The implementation of dimensionless parameters revealed that this distance was slightly dependent on the damping. Moreover, the limiting moving mass ratio for such unexpected instability was derived.The results were validated by eigenmode expansion analysis on long finite beams, for which computational time savings were proposed by the rearrangement of the terms involved. Excellent agreement between the results was obtained, validating the new formulae. Furthermore, extension to more general cases and additional moving masses can easily be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.