Abstract

The parametric instability of a wheel moving on a discretely supported rail is discussed. To achieve this, an analysis method is developed for a quasi-steady-state problem which can represent an exponential growth of oscillation. The temporal Fourier transform of the rail motion is expanded by a Fourier series with respect to the longitudinal coordinate, and then the response of the rail deflection due to a quasi-harmonic moving load is derived. The wheel/track interaction is formulated by the aid of this function and reduced to an infinite system of linear equations for the Fourier coefficients of the contact force. The critical velocities between the stable and unstable states are calculated based on the nontrivial condition of the homogeneous matrix equation. Through these analyses the influences of the modeling of rail and rail support on the unstable speed range are examined. Moreover, not only the first instability zone but also other zones are evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.