Abstract
Load rejection is one of the most crucial transient processes in pump-turbines. However, only a few achievements on the internal flow mechanism of pump-turbines in load rejection processes have been presented. In this study, firstly, the load rejection process in a pump-turbine was simulated with a three-dimensional unsteady turbulent numerical method using the technology of dynamic mesh and the user-defined functions in the FLUENT software. The rotational speed predicted through numerical simulation agrees well with experimental data. Secondly, based on numerical simulations, a dynamic instability in the load rejection process was found and presented that the pressure and performance characteristics, including hydraulic torque on the runner and the discharge, fluctuate in the overall trend. Meanwhile, all the performance characteristics and the pressure fluctuate sharply near the operating condition points, where hydraulic torque on the runner is equal to zero or reverse flow is maximum at reverse pump conditions. Finally, the time-frequency features and formation mechanism of the dynamic instability were analyzed emphatically. The analysis of the internal flow in the pump-turbine reveals that dynamic instability in the load rejection process are mainly caused by the vortex flow in the tandem cascades regions. Furthermore, the possible methods to improve the dynamic instability in the load rejection process were recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.