Abstract

In this paper, a novel dynamic-inner canonical correlation analysis (DiCCA) algorithm is proposed to extract dynamic components from high dimensional dynamic data. DiCCA extracts latent variables with descending dynamics, which are referred to as principal time series. Since DiCCA enables the principal time series to have maximal predictability, the most important dynamic features in the data are guaranteed to be extracted first. Therefore, usually a lower dimensional principal time series are able to provide good representation of the dynamic features, leading to the ease of interpretation and visualization. A case study on the Eastman plant-wide oscillating dataset demonstrates the effectiveness of the proposed method. Combined with Granger causality analysis, major oscillatory latent dynamics are analyzed, identified, and localized to equipment malfunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.