Abstract

We develop numerical and analytical approaches to calculate mutual information between complete paths of two molecular components embedded into a larger reaction network. In particular, we focus on a continuous-time Markov chain formalism, frequently used to describe intracellular processes involving lowly abundant molecular species. Previously, we have shown how the path mutual information can be calculated for such systems when two molecular components interact directly with one another with no intermediate molecular components being present. In this paper, we generalize this approach to biochemical networks involving an arbitrary number of molecular components. We present an efficient Monte Carlo method as well as an analytical approximation to calculate the path mutual information and show how it can be decomposed into a pair of transfer entropies that capture the directed flow of information between two network components. We apply our methodology to study information transfer in a simple three-node feedforward network, as well as a more complex positive-feedback system that switches stochastically between two metastable modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.