Abstract

In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call