Abstract

Incremental SVM framework is often designed to deal with large-scale learning and classification problems. The paper presents a new dynamic incremental learning algorithm for mining data streams. The multiple classifiers are constructed according to the statistic characters of batched training data in data streams. The feature space of all data is partitioned according to the performance of each classifier and the statistical characters on each region are counted. The classifier that has the best performance on the region near the test data is selected as the final output. The experimental results confirm the feasibility and validity of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.