Abstract

Dynamic in vivo biodistribution of gold nanoparticles (GNPs) in living mice was first successfully acquired by a pinhole X-ray fluorescence (XRF) imaging system using polychromatic X-rays. The system consisted of fan-beam X-rays to stimulate GNPs and a 2D cadmium zinc telluride (CZT) gamma camera to collect K-shell XRF photons emitted from the GNPs. 2D XRF images of kidney slices of three Balb/C mice were obtained within 2 minutes of irradiation per slice. 40 mg of GNPs suspended in a 0.2 mL phosphate-buffered saline was injected into the mice via a tail vein. The mice were scanned over a 60 min period after the injection of GNPs in order to acquire a dynamic biodistribution of GNPs. The concentrations of GNPs measured by the CZT gamma camera were then validated by inductively coupled plasma atomic emission spectroscopy and ex vivo L-shell XRF measurements using a silicon drift detector. The GNP concentrations in the right-side kidneys were 1.58% by weight (wt%) at T =0 min and 0.77 wt% at T=60 min after the injection. This investigation showed a dramatically reduced scan time and imaging dose. Hence, we conclude that dynamic in vivo XRF imaging of GNPs is technically feasible in a benchtop system. The developed pinhole XRF imaging system can be a potential molecular imaging modality for metal nanoparticles to emerge as a radiosensitizer and a drug-delivery agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call