Abstract

BackgroundAdvances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications.ResultsWe have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis.ConclusionsUsing various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

Highlights

  • Advances in optical imaging modalities and the continued evolution of geneticallyencoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms

  • This is most achieved if each cell can be marked with an identifiable tag that is visible at subcellular resolution [10,11]

  • To evaluate histone-tagged fluorescent protein fusions in embryonic stem (ES) cells and mice, we generated constructs comprising an N-terminally positioned human H2B sequence followed at the C-terminus by sequences for various fluorescent proteins both green fluorescent protein (GFP) and DsRedbased

Read more

Summary

Introduction

Advances in optical imaging modalities and the continued evolution of geneticallyencoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. GFP and other genetically-encoded autofluorescent protein reporters have a number of properties that make them ideal for multidimentional imaging of living specimens: no substrate (except photons) is required to generate signal, they have a high signal-to-noise ratio, are nontoxic, stable at 37°C and resistant to photobleaching. An approach is required where 3D space is segmented at cellular resolution This is most achieved if each cell can be marked with an identifiable tag that is visible at subcellular resolution [10,11]. Since it exhibits low autofluorescence, and is a single, universal and volumetrically constrained cellular organelle, the nucleus is ideal for such labeling [12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call