Abstract

Early allograft dysfunction (EAD) is a life-threatening and fast-developing complication after liver transplantation. The underlying mechanism needs to be better understood, and there has yet to be an efficient therapeutic target. This study retrospectively reviewed 109 patients undergoing liver transplantation, with dynamic profiling of CD3/4/8/16/19/45/56 on the peripheral immune cells (before transplant and 2-4 days after). Altogether, 35 out of the 109 patients developed EAD after liver transplantation. We observed a significant decrease in the natural killer cell proportion (NK cell shift, p = 0.008). The NK cell shift was linearly correlated with cold ischemic time (p = 0.016) and was potentially related to the recipients' outcomes. In mouse models, ischemic/reperfusion (I/R) treatments induced the recruitment of NK cells from peripheral blood into liver tissues. NK cell depletion blocked a series of immune cascades (including CD8+ CD127+ T cells) and inhibited hepatocyte injury effectively in I/R and liver transplantation models. We further found that I/R treatment increased hepatic expression of the ligands for natural killer group 2 member D (NKG2D), a primary activating cell surface receptor in NK cells. Blockade of NKG2D showed a similar protective effect against I/R injury, indicating its role in NK cell activation and the subsequent immunological injury. Our findings built a bridge for the translation from innate immune response to EAD at the bedside. Peripheral NK cell shift is associated with the incidence of EAD after liver transplantation. NKG2D-mediated NK cell activation is a potential therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call