Abstract

For offshore wind farms which are planned in sub-arctic regions like the Baltic Sea and Bohai Bay, support structure design has to account for load effects from dynamic ice-structure interaction. There is relatively high uncertainty related to dynamic ice loads as little to no load- and response data of offshore wind turbines exposed to drifting ice exists. In the present study the potential for the development of ice-induced vibrations for an offshore wind turbine on monopile foundation is experimentally investigated. The experiments aimed to reproduce at scale the interaction of an idling and operational 14 MW turbine with ice representative of 50-year return period Southern Baltic Sea conditions. A real-time hybrid test setup was used to allow the incorporation of the specific modal properties of an offshore wind turbine at the ice action point, as well as virtual wind loading. The experiments showed that all known regimes of ice-induced vibrations develop depending on the magnitude of the ice drift speed. At low speed this is intermittent crushing and at intermediate speeds is ‘frequency lock-in’ in the second global bending mode of the turbine. For high ice speeds continuous brittle crushing was found. A new finding is the development of an interaction regime with a strongly amplified non-harmonic first-mode response of the structure, combined with higher modes after moments of global ice failure. The regime develops between speeds where intermittent crushing and frequency lock-in in the second global bending mode develop. The development of this regime can be related to the specific modal properties of the wind turbine, for which the second and third global bending mode can be easily excited at the ice action point. Preliminary numerical simulations with a phenomenological ice model coupled to a full wind turbine model show that intermittent crushing and the new regime result in the largest bending moments for a large part of the support structure. Frequency lock-in and continuous brittle crushing result in significantly smaller bending moments throughout the structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.