Abstract
Composite materials enable the tailoring of load-dependent, passive, shape adaptation because of the directional stiffness of the fibers. However, excessive flow-induced vibrations and dynamic instabilities represent a design challenge for composite marine appendages. We develop DCFoil, a dynamic composite foil solver that uses one-dimensional models—composite beam elements and unsteady lifting line theory—to perform static and dynamic frequency domain analysis. The program is differentiated to provide derivatives of an aggregated flutter function with respect to design variables. The flutter function characterizes dynamic hydroelastic stability. We apply the solver to investigate the hydroelastic performance of a composite fin bulb keel based on the IMOCA 60 class of racing yachts, which were reported to have flutter problems. Based on the derivatives computed for this bulb keel, we found that the foil thickness has the most significant impact on flutter speed. This work shows both the development of and utility of a program with flutter derivatives for flexible composite marine appendage design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.