Abstract

Due to the limitations of sampling conditions and sampling techniques in many real industrial processes, the process data under different sampling conditions subject to different sampling frequencies, which leads to irregular interval sampling characteristics of the entire process data. The dynamic historical data information reflecting the production status under irregular sampling frequency has an important influence on the performance of data feature extraction. However, the existing soft sensor modeling methods based on deep learning do not consider introducing dynamic historical information into the feature extraction process. To combat this issue, a novel attention-based dynamic stacked autoencoder networks (AD-SAE) for soft sensor modeling is proposed in this paper. First, the sliding window technology and attention mechanism based on position coding are introduced to select dynamic historical samples and calculate the contribution of different historical samples to the current sample, respectively. Then, AD-SAE combines obtained historical sample information and current sample information as the input of the network for deep feature extraction and industrial soft sensor modeling. The experimental results on the actual hydrocracking process data set show that the proposed method has better performance than traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call