Abstract
The structure-functional properties of milk proteins are relevant in food formulation. Recently, there has been growing interest in dynamic high-pressure homogenization effects on the rheological-structural properties of food macromolecules and proteins. The aim of this work was to evaluate the effects of different homogenization pressures on rheological properties of milk protein model systems. For this purpose, sodium caseinate (SC) and whey protein concentrate (WPC) were dispersed at different concentrations (1, 2, and 4%), pasteurized, and then homogenized at 0, 18MPa (conventional pressure, CP), 100MPa (high pressure, HP), and 150MPa (HP+). Differences in viscosity were observed between WPC and casein dispersions according to concentration, heat treatment, and homogenization pressure. Mechanical spectra described the characteristic behavior of solutions except for the WPC 4% pasteurized sample, in which a network formed but was broken after homogenization. Dispersions with different ratios of WPC and SC were also made. In these systems, pasteurization alone did not determine network formation, whereas homogenization alone promoted cold gelation. A total concentration of at least 4% was required for homogenization-induced gelation in pasteurized and unpasteurized samples. Gels with higher elastic modulus (G′) were obtained in more concentrated samples, and a bell-shaped behavior with the maximum value at HP was observed. The HP treatment produced stronger gels than the CP treatment. Similar G′ values were obtained when different concentrations, pasteurization conditions, and homogenization pressures were combined. Therefore, by setting appropriate process conditions, systems or gels with tailored characteristics may be obtained from dispersions of milk proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.