Abstract

Heuristically accelerated reinforcement learning (HARL) is a new family of algorithms that combines the advantages of reinforcement learning (RL) with the advantages of heuristic algorithms. To achieve this, the action selection strategy of the standard RL algorithm is modified to take into account a heuristic running in parallel with the RL process. This paper presents two approximated HARL algorithms that make use of pheromone trails to improve the behaviour of linearly approximated SARSA(lambda ) by dynamically learning a heuristic function through the pheromone trails. The proposed dynamic algorithms are evaluated in comparison to linearly approximated SARSA(lambda ), and heuristically accelerated SARSA(lambda ) using a static heuristic in three benchmark scenarios: the mountain car, the mountain car 3D and the maze scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.