Abstract

The antimicrobial activity of native antimicrobial peptides (AMPs) is often attributed to their helical structure, but the effectiveness of synthetic mimics with dynamic helical conformations, such as antimicrobial cationic polymers (ACPs), has not been well studied. Herein we demonstrate the antimicrobial activity of pyrrolidinium-pendant polyacetylenes (PAs) with dynamic helical conformations. The PAs exhibit fast and efficient antimicrobial activity against a wide range of pathogens, with low toxicity to mammalian cells and minimal risk of antibiotic resistance. In addition, the full-thickness wound infection model in mice has demonstrated the favorable biocompatibility and effective in vivo antibacterial capabilities of these PAs. Our data suggest that the dynamic helical structure of these PAs allows them to adapt and form pores in the bacterial membrane upon interaction, leading to their potent antimicrobial activity. This work investigated the antibacterial mechanism of dynamic helical ACPs, which provides valuable guidance for the rational design of high-performance antimicrobial agents. STATEMENT OF SIGNIFICANCE: Our study represents a significant contribution to the literature on antimicrobial cationic polymers (ACPs) as alternatives to antibiotics. Through a systematic investigation of the role of dynamic helical conformation in polyacetylenes (PAs) and the use of PAs with adaptive structure for the first time, we have provided valuable insights into the bacterial membrane action and killing mechanisms of these polymers. The results of our study, including fast killing rates and minimum inhibitory concentrations as low as 4-16µg/mL against a broad range of pathogens and strong in vivo antibacterial activity, demonstrate the potential of these ACPs as high-performance antimicrobials. Our findings may guide the design of future ACPs with enhanced antimicrobial activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.