Abstract
Modeling the joint distribution of spot and futures returns is crucial for establishing optimal hedging strategies. This paper proposes a new class of dynamic copula-GARCH models that exploits information from high-frequency data for hedge ratio estimation. The copula theory facilitates constructing a flexible distribution; the inclusion of realized volatility measures constructed from high-frequency data enables copula forecasts to swiftly adapt to changing markets. By using data concerning equity index returns, the estimation results show that the inclusion of realized measures of volatility and correlation greatly enhances the explanatory power in the modeling. Moreover, the out-of-sample forecasting results show that the hedged portfolios constructed from the proposed model are superior to those constructed from the prevailing models in reducing the (estimated) conditional hedged portfolio variance. Finally, the economic gains from exploiting high-frequency data for estimating the hedge ratios are examined. It is found that hedgers obtain additional benefits by including high-frequency data in their hedging decisions; more risk-averse hedgers generate greater benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.