Abstract

Numerical simulation of turbulent mixing process of polydisperse quartz particle (particle size distribution in the range of 0.1–0.4 mm) flow with Ar and Ar-H2 plasma generated by radio frequency inductively coupled plasma (RF-ICP) torch has been made. An approximate two-stage approach has been proposed to calculate the spatial–temporal distributions of temperature and resulting thermal stress in quartz particles during dynamic heating in polydisperse plasma flow. The influence of working gas compositions, particle size distributions, injection angle and flow rate of carrier gas on the thermal destruction conditions of quartz particles has been determined under different particle feed rates. It is found that all the solid quartz particles (0.1–0.4 mm) could be thermal destructed without overheating in RF-ICP torch system, when the hydrogen volume fraction in working gases is more than 1.5%–2% and particle feed rate is in a certain range. The values of the maximum and minimum feed rates have been determined under different hydrogen volume fractions. An optimal particle injection angle and flow rate of carrier gas is found around 50°–60° and 160–220 slpm, under which the value of maximum equivalent thermal stress in quartz particles is highest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.