Abstract
The purpose of this study is to propose a dynamic heat transfer model for predicting transient heat recovery steam generator (HRSG) behaviors involving phase changes in heat exchanger tubes. The model deals with any combination of phase states by switching the equations for heat transfer coefficient, specific volume, and friction factor corresponding to their physical characteristics. The model also constrains the change of mass flow calculated by momentum balance to satisfy thermodynamic relationships which are neglected by conventional models. The simulation results show that the proposed model predicts the transient pressure drop, outlet mass flow changes, and the reduction in heat transfer coefficient caused by dryout during heating or evaporating processes. In addition, the model improves the accuracy of mass flow transients compared to those obtained by conventional models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.