Abstract

In this paper, a new heat and mass transfer model for an electric oven and the load placed inside is presented. The developed model is based on a linear lumped parameter structure that differentiates the main components of the appliance and the load, therefore reproducing the thermal dynamics of several elements of the system including the heaters or the interior of the product. Besides, an expression to estimate the water evaporation rate of the thermal load has been developed and integrated in the model so that heat and mass transfer phenomena are made interdependent. Simulations and experiments have been carried out for different cooking methods, and the subsequent energy results, including energy and power time-dependent distributions, are presented. The very low computational needs of the model make it ideal for optimization processes involving a high number of simulations. This feature, together with the energy information also provided by the model, will permit the design of new ovens and control algorithms that may outperform the present ones in terms of energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call