Abstract

Biomolecular motor systems are attractive for future nanotechnological devices because they can replace nanofluidics by directed transport. However, the lack of methods to externally control motor-driven transport along complex paths limits their range of applications. Based on a thermo-responsive polymer, we developed a novel technique to guide microtubules propelled by kinesin-1 motors on a planar surface. Using electrically heated gold microstructures, the polymers were locally collapsed, creating dynamically switchable tracks that successfully guided microtubule movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call