Abstract

Broad learning system (BLS) is an effective neural network requiring no deep architecture, however it is somehow fragile to noisy data. The previous robust broad models directly map features from the raw data, which inevitably learn useless or even harmful features for data representation when the inputs are corrupted by noise and outliers. To address this concern, a discriminative and robust network named as dynamic graph regularized broad learning (DGBL) with marginal fisher representation is proposed for noisy data classification. Different from the previous works, DGBL eliminates the effect of noise before the random feature mapping by the proposed robust and dynamic marginal fisher analysis (RDMFA) algorithm. The RDMFA is able to extract more robust and informative representations for classification from the latent clean data space with dynamically generated graphs. Furthermore, the dynamic graphs learned from RDMFA are incorporated as regularization terms into the objective of DGBL to enhance the discrimination capacity of the proposed network. Extensive quantitative and qualitative experiments conducted on numerous benchmark datasets demonstrate the superiority of the proposed model compared to several state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.