Abstract
Accurate crowd flow prediction is essential for traffic guidance and traffic control. However, the high nonlinearity, temporal complexity, and spatial complexity that crowd flow data have makes this problem challenging. This research proposes a dynamic graph convolutional network model (Res-DGCN) based on the residual network structure for crowd inflow and outflow prediction in urban areas. Firstly, as the attention layer, the spatio-temporal attention module (SA) is employed for capturing the spatial relationship between the target node and the multi-order adjacent nodes by processing the features of the human flow data. Secondly, a conditional convolution module (SCondConv) is used to enhance the model’s capacity for learning about the shifting characteristics of crowd flow to obtain spatial dependence. Finally, we train the model with the Huber loss function to lower the model’s sensitivity to outliers and achieve optimal convergence. In two public datasets, the mean absolute error (MAE) of the proposed model is improved by 5.2% and 9.4%, respectively, compared to the baseline models, and the root mean square error (RMSE) is improved by 4.8% and 8.8%, confirming the model’s usefulness for crowd flow prediction tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.