Abstract

In Electronic Toll Collection (ETC) systems, accurate gantry topology data are crucial for fair and efficient toll collection. Currently, inaccuracies in the topology data can cause tolls to be based on the shortest route rather than the actual distance travelled, contradicting the ETC system’s purpose. To address this, we adopt a novel Gradient Boosting Decision Tree (GBDT) algorithm, Light Gradient Boosting Machine (LightGBM), to dynamically update ETC gantry topology data on highways. We use ETC gantry and toll booth transaction data from a province in southeast China, where ETC usage is high at 72.8%. From this data, we generate a candidate topology set and extract five key characteristics. We then use Amap API and QGIS map analysis to annotate the candidate set, and, finally, apply LightGBM to train on these features, generating the dynamic topology. Our comparison of LightGBM with 14 other machine learning algorithms showed that LightGBM outperformed the others, achieving an impressive accuracy of 97.6%. This methodology can help transportation departments maintain accurate and up-to-date toll systems, reducing errors and improving efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call