Abstract

In this article, a globally adaptive neural-network tracking control strategy based on the dynamic gain observer is proposed for a class of uncertain output-feedback systems with unknown time-varying delays. A reduced-order observer with novel dynamic gain is proposed. An n th-order continuously differentiable switching function is constructed to achieve the continuous switching control of the system, thus further ensuring that all the closed-loop signals are globally uniformly ultimately bounded (GUUB). It is proved that by adjusting the designed parameters, the tracking error converges to a region which can be adjusted to be small enough. The effectiveness of the control scheme is demonstrated by two simulation examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.