Abstract

In this article, a globally adaptive neural-network tracking control strategy based on the dynamic gain observer is proposed for a class of uncertain output-feedback systems with unknown time-varying delays. A reduced-order observer with novel dynamic gain is proposed. An n th-order continuously differentiable switching function is constructed to achieve the continuous switching control of the system, thus further ensuring that all the closed-loop signals are globally uniformly ultimately bounded (GUUB). It is proved that by adjusting the designed parameters, the tracking error converges to a region which can be adjusted to be small enough. The effectiveness of the control scheme is demonstrated by two simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call